diff --git a/book.org b/book.org index 0d88bfe..4ec176b 100644 --- a/book.org +++ b/book.org @@ -2439,17 +2439,17 @@ The latter is also called sensitivity if used in combination with specificity (E #+NAME: eq:precision \begin{equation} -\frac{TP}{TP+FP} +\frac{\mathit{TP}}{\mathit{TP}+\mathit{FP}} \end{equation} #+NAME: eq:recall \begin{equation} -\frac{TP}{TP+FN} +\frac{\mathit{TP}}{\mathit{TP}+\mathit{FN}} \end{equation} #+NAME: eq:specificity \begin{equation} -\frac{TN}{TN+FP} +\frac{\mathit{TN}}{\mathit{TN}+\mathit{FP}} \end{equation} Many studies for pass/fail prediction use accuracy (Equation\nbsp{}[[eq:accuracy]]) as a single performance metric. @@ -2459,7 +2459,7 @@ This is clearly a bad classifier, but it will nonetheless have an accuracy of 75 #+NAME: eq:accuracy \begin{equation} -\frac{TP+TN}{TP+TN+FP+FN} +\frac{\mathit{TP}+\mathit{TN}}{\mathit{TP}+\mathit{TN}+\mathit{FP}+\mathit{FN}} \end{equation} In our study, we will therefore use two more complex metrics that take these effects into account: balanced accuracy and F_1-score.